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Abstract

The solid�liquid transition is described by use of the model incorporating the non-linear interactive os-
cillators. The individual non-linear oscillators are formed from the mechanical units of about the mono-
mer size and produce the vibrations on the lower amplitude level, for the solid phase, either in amor-
phous or in crystal-like form. As the temperature starts to overpass the Vogel�s temperature, the
vibrations of individual units are big enough to cause the permanent displacements of the individual vi-
brating particles; the material starts to flow and the process of diffusion begins as well. As the tempera-
ture is passing through Tg vicinity, the large mechanical heterogeneity�s start to appear as the small per-
centage of oscillators enlarge their amplitude of vibrations enormously and act as the local stress
perturbations centers. These centers are responsible for the destruction of original matrixes and the
sharp onset of fluidity and diffusion takes place. The upper amplitude of vibration motion is the basic
property of a liquid state. The whole system of vibrations in matrix is described by use of techniques of
deterministic chaos theories. It is shown as well, how the mutual interplay of the partition functions (vi-
bration and cohesive), plays the important role in transition from liquid to solid states.

Keywords: diffusion, entropy, fluidity, glass transition, non-linearity, solid�liquid transition, tem-
perature, theory, unharmonic oscillators, vacancies, vibrations

The vibration structures in condensed state and quantitative
description of vacancies creation

The ensemble of on low amplitude vibrating particles can represent the glassy solids
as well as the crystal like materials. It is assumed that the individual vibrating parti-
cles of about a monomer size [1] are localized in the non-linear potential valleys
[2�4], where they perform the oscillations due to the energy of thermal motion:
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where U0 is the basic level of internal energy, ξ=r�r0 is the deviation from the equilib-
rium position and r0 is defined as half of the distance separating the bottoms of two
potential valleys. Only for solid state the bottom of r0 has a constant position.

For the liquids r0 has to be subjected to diffusion movements. It is assumed, that
many vibrations inside of potential valley take place before the diffusion jump occurs.

Parameters f, g, c can be determined from the experiment based upon the values
of specific heat cv or thermal expansion coefficient α. On micro-level these parame-
ters f, g, c depend mainly on the distances of closest neighbors in vicinity of particles
considered.

c k
c

f

g

f
k TV B B= + +

















1

3

2

15

92

2

3
(2)

α=
1

0
2r

g

f
kB (3)

It can be seen from Eqs (2) and (3) that the parameters f, g, c act selectively on
the levels of the thermal expansion coefficient α or on the level of specific heat cv [5].
The shape and character of non-linear valley depends on the separation of particles, in
close vicinity of vibrating particle [2�4], however the solid state physics keeps the
positions of particles, for the majority of cases, constant as the temperature rises and
no diffusion changing the mutual particles position is permitted. (See the calculation
of specific heat presented by Debye [6], for example).

The interactive non-linear system

To treat the transition of solid into the liquid state, we place the non-linear potential
valley into the equation of motion:
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where m is the mass of vibrating particle. Fext represents the interactions of given par-
ticle with its vicinity and it will depend on level of vibrations, cohesive forces and
mutual interactions of particles. The existence of acoustic waves of different wave-
lengths, in sense of Debye�s theory, will guarantee the real existence of Fext.

In general Fext can be taken as a functional [7], of integrals over the moments Iph

and coordinates Icf, which form the partition function Z:

Fext = Ψ(Iph,Icf) (5)

Both integrals Iph, Icf are defined in relation to partition function Z:
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and can be considered as mutually interdependent.
Iph stands for the integral over the moments of particles (mv=p) in phase space:
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and Icf stands for:
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u(rij) represents the cohesive energy of mutual interactions of particle (i) and particle
(j) and rij stands for the particles distance. For the solids the changes of Icf are usually
not considered because the individual vibrating units have constant positions in sam-
ple under investigation. In other words, for solids the thermal motion of individual
particles is not strong enough to dislodge the individual vibrating units from their av-
erage position.

[In the following text we take as the solids the glasses under the Vogel�s temper-
ature TV and the crystals under the melting point Tm. (The Vogel�s temperature for
polymers is about 52 K under Tg but for inorganic glasses this difference can be even
larger)].

The bottom of potential valley keeps in solids the constant position relatively to
placements of the particles in closest vicinity and all particles are forced to vibrate only
on the lower amplitudes, characteristic of non-linear oscillators. The thermal expansion is
considered to be connected usually only to homogeneous volumetric expansion and dif-
ferentially small shifts in frequencies, according to law of Gruneissen [8].

For solids, the constants of f, g, c of Eq. (1), will depend on the average positions
of particles forming the system. This is not the case for the liquid state, where the mi-
gration of particles or the switch to higher amplitudes (according to Figs 1 and 2, for
minority of particles), are permitted.

The positions for the vibrating particles for liquids will eventually change in
time, as the migration of particles occur, due to the process of diffusion. The parame-
ters f, g, c appearing in Eqs (1)�(3) take the form:

f f x t y t z t x t y t x t= 1 1 1 1 2 2[ ( ), ( ), ( ), ( ), ( ).......... ( ),n y t z t F T tn n ext( ), ( ).........., ( , )]

g f x t y t z t x t y t x t= 2 1 1 1 2 2[ ( ), ( ), ( ), ( ), ( ).......... ( ),n y t z t F T tn n ext( ), ( ).........., ( , )] (11)

c f x t y t z t x t y t x t= 3 1 1 1 2 2[ ( ), ( ), ( ), ( ), ( ).......... ( ),n y t z t F T tn n ext( ), ( ).........., ( , )]

where f1, f2, f3 are symbols of functional dependence and T is temperature.
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The symbols x1, x2,..........zn are the average coordinates of vibrating units of par-
ticles forming the system in vicinity of considered particle . For the solid state, and in
lines of our model perception, we will assume that, for the low temperatures, the tem-
perature dependent mutual interactive force Fext is not big enough to cause the change
in average positions of coordinates, x1, x2..........zn and thus also the parameters f, g, c
stay as constant. This can be assumed for the systems where all the forms of the diffu-
sion are excluded. The non-existence of diffusion, forms the fundamental idea for cv

perception according to Debye [6] valid for crystals, or for amorphous phase accord-
ing to Tarasov [9�12] and Wunderlich [13].

As temperature rises, the integral Iph will increase and the average positions of
particles in space x1, y1,..........xj, yj, zj,..........xp, yp, zp,..........zn start to be function of
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Fig. 1 A schematic picture of vacancy creation in liquid structure. The central particle
is able to spatially displace the particles in its own vicinity and substantially en-
large vibration amplitude. The agitated spot will give a rise to entropy change
S=kBlnWsemievap according to Eq. (14)

Fig. 2 A schematic view of amplitude rise, for strongly damped non-linear oscillator
(curve II) as a function of temperature. The Tg area is characterized by very high
viscosity and the amplitude enlargements will proceed according to Eqs (4) and
(11) very slowly. Curve I shows the first order transition, such as Tm or Tb boiling
points. The analogical, sudden amplitude enlargement and creation or annihilation
of semi-evaporated spots in sense of Fig. 1 will proceed in liquid state



time x1(t),y2(t)... etc. and the diffusion process starts to develop. The diffusion process
can act selectively with temperature increase, affecting at low temperature some
groups xj(t), yj(t), zj(t) only, then at higher temperature, other groups of particles can
be involved as time dependent variable as well. The integral Iph will cause, as the tem-
perature is risen, the changes in structural arrangements of the system and can bring
time related changes also into the integral Icf. Through the rise of Iph the system can be
brought out of local �frozen� non-equilibrium configuration eventually and can be
heading to another coordinates characteristic of the situation closer toward the equi-
librium [14]. This form of interaction is the physical base for the process of glass or
crystal annealing, tempering or other forms of materials heat treatment restructuring.

For glasses the �liberation� of individual groups can be made inside of �isolated
islands� of mobility (Johari�Goldstein β maximum [13, 14]) and does not have to in-
volve the external coordinates, which define the sample external shape. For example,
such movements, which can involve the rotational motion of individual groups will
be, only mildly, or not at all, connected to the external coordinates defining the labo-
ratory dimensions of sample under studies and thus they will not have strong impact
on the thermal expansivity coefficient. Concerning glasses as the temperature rises
and passes the Vogel�s temperature all particles start to move and the diffusion pro-
cess starts to take place. Within hours, days or years the external shape of sample will
change above TV as well. The upswing in the cp value takes place at TV and at Tg the
coefficient α undergoes a step-wise change, too.

Under TV in our model perception the rise in entropy is caused mainly by the vi-
bration modes of entropy only, because as the particles are kept in constant positions
and we consider solid state model only. The overall arrangement of particles in vibra-
tion levels will define the vibration part of entropy Wth [15] (Fig. 3). As it has been
shown by Wunderlich [13], the number of particles associated with the boson peaks,
tunneling states etc. is for many substances very small and thus, to the Vogel�s tem-
perature TV, the specific heat cv is almost the same for the crystals as is for the amor-
phous bodies. The entropy rise in amorphous bodies under TV is thus connected
mainly with the thermal (vibration) entropy rise. For the crystals, because the extra
energy, connected to melting phase change is involved, the thermal entropy part plays
the crucial role until the melting temperature Tm is reached.For temperatures T≤Tm (or
T≤Tg) we can write:

S≅kBlnWth (12)

where, Wth is the probability connected with the arrangements of particles on different
vibration levels of energy.

At the moment when special rearrangements start to play the important role
(Fig. 4), the particles positions are changed during time, the another part of the en-
tropy has to be added:

S=kBlnWth+kBlnWconf (13)
where Wconf is connected with the overall amount of spatial particles displacements.

In many cases this term will be active at temperatures where the crystals are an-
nealed and changes of the structural lattice take place, or for amorphous bodies above
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TV and below Tg. In certain cases some exceptions can occur, too. For some systems
the term Wconf can be very active even for temperatures smaller than 1 K. This is valid
for crystals [16], as well as for amorphous bodies [17�19].

The mathematical treatment of strong non-linearity’s above Tg

transition

As the result of rising local expansions the system of Eqs (3) and (4) is strongly non-
linear in mathematical sense and the solutions for such systems can be taken from de-
termining chaos theories. According to theories of determining chaos [20�22] Eq. (4)
will be prone to show up irregular amplitudes of vibrations with time. The substantial
changes in vibration amplitudes can only develop, if the �cracks� in solid matrix starts
to appear. This is actually confirmed from experiments of positron annihilation spec-
troscopy-PASCA measurements [23�27] which shows that the huge voids start to de-
velop in isolated places in amorphous state above TV. This voids reach the level larger
than 100 Å

3 above Tg. The changes in parameters f, g, c do not have to have even con-
tinuous character in local spots. The local highly expansive spots characterized by
hundred times larger coefficient of local expansion coefficient α will develop with
the onset of liquid state above Tg. The same is valid for the amplitude of vibrations.
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Fig. 3 A schematic picture of thermal (vibration) contribution of entropy. The individ-
ual particles (left) are localized at constant average positions in space and vi-
brate on different energy levels (right). The entropy S=kBlnWth is determined
through the overall amount of particles arrangements on the different energies
levels

Fig. 4 A schematic view of configurational entropy enlargement S=kBlnWcf, material-
ized through the spatial displacements



The strong non-linearity of Eqs (4) and (11) will mathematically justify the am-
plitude switch in localized spots (Figs 1 and 2), where the central particle is able to
push aside the particles in its vicinity and create the highly expansive spot. Such
highly expansive spots are responsible for the high expansion coefficients of liquids.
The entropy contribution connected with the semi-evaporated state (Fig. 1), which is
created inside the liquid system in vacant areas, can be eventually contemplated as
well:

S = kB[lnWth + lnWconf + lnWsemievap] (14)

Because the vacancies areas, thanks to the reports of PASCA experiments have a
well defined size, (which is larger than the Van der Waales volume, but smaller than
the critical volume of particles involved), we can estimate the change of enthalpy
connected with the semi-evaporated state. It can be taken as the fraction of evapora-
tion enthalpy ∆Hevap.

To take the ∆Hsemievap=∆Hevap/n, where �n� is about 2�4, will be in agreement with
the PASCA experiments as well as with the Eyring�s [28, 29] estimate on viscosity.

To find a fast solution of Eq. (4) and provide illustrative examples, which can be
easily visualized, the second order differential Eq. (4) is usually turned into two sepa-
rate first order differential equations. This procedure is usually performed in the de-
termining chaos theories [30, 31] as well as in the studies of �organized structures�
[32], or in studies of non-equilibrium thermodynamics [33].

By choosing the variables A1≡ξ and A2≡dξ/dt we can rewrite Eq. (4) into the
forms [34, 35]:
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Equations (15) and (16) can be analyzed further in the vicinity of vibration sta-
tionary point. The system of Eqs (15) and (16), will have non-zero solution only if
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where �a1= α11+ α22, a2= α11α22+ α12α21.
The changes from a solid to a liquid state, as well as the other higher temperature

transitions, can be investigated through the change of parameters a1 and a2 within cer-
tain range. The overall view of the interactions taken as dominating in given type of
transition provides Table 1 [35].
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Table 1 The dominant types of particles interactions for different phenomena in condensed and
gas phases rising from Eqs (4) and (11) [35]. Different types of singular points

Shapes of
trajectories

Name of
singular point

Roots properties
Values of

coefficients, a1, a2
Phenomenon

stable node
real
λ1<0
λ2<0

a1
2�4a2>0

a2>0
a1>0

fast
condensation

unstable node
real
λ1>0
λ2>0

a1
2�4a2>0

a2>0
a1<0

situation above
Boyle temp.

saddle point
real
λ1<0
λ2>0

a1
2�4a2>0

a2<0
a1≠0

the area of
critical point

infinite amount
of saddle points

real
λ1=0
λ2>0 a)
λ1<0 b)

a1
2�4a2>0

a2=0
a1≠0

the area of
critical point

stable focal
point

complex
Re(λ1)<0

a1
2�4a2>0

a2>0
a1>0

condensation

unsteady focal
point

complex
Re(λ1)>0

a1
2�4a2>0

a2>0
a1<0

sublimation

stable
oscillations

complex
Re(λ1)=0

a1
2�4a2>0

a2>0
a1=0

stable vibrations
in condensed
phase

The liquids show us the very interesting phenomena of local high level expan-
sion in discrete points associated with internal surface enlargement due to the exis-
tence of vacancies. The existence of vacancies stems from the considerations of high
non-linearity of Eqs (4) and (11). On the surfaces of vacancies the internal energy is
always higher than in the bulk. So the liquid system represents the foamy like struc-
ture which enlarge its surface from inside. The vacancies are not empty voids, but are
filled up with actively moving particles. In this way the higher transitions such as the
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boiling or critical point can be contemplated as well (Table 1). While only few vacan-
cies exist (according to Bueche [36] the ratio of vacancies to vibrating particles is
equal at Tg, 1:40) at lower temperatures, at the critical temperature the amount of va-
cancies reaches the level at which the condensed phase disintegrates completely [34]
and all oscillating particles are able to reach the upper vibration amplitude with the
addition of a very tiny amount of energy.

Conclusions

We have presented the coherent model, where the integral characteristic of cohesive
forces Icf is varied by increasing vibrations of mass units as temperature rises. The level of
vibrations is characterized by the integral Iph performed over the moments of individual
particles. The increase in Iph can act selectively at low temperatures, affecting few coordi-
nates or few particles inside the sample only. As the temperature is further increased, the
influence of Iph on the Icf will rise as well and more particles will be able to enter into the
process of diffusion. Finally, the vibration units, forming the basic frame of the sample,
will be involved in diffusion and material starts to flow. Not only Tg and Tm transitions,
but all the higher transitions, such as the boiling and critical points, can be treated. Be-
sides Eq. (11), which can serve for the best justification of rising non-linearity, there can
be another explanation given for the cracks and voids developments stemming from per-
turbations of regular basic cohesive or repulsive forces. As the electrons are in general re-
sponsible for cohesive forces these electrons are perturbed by vibration moments of nu-
cleuses and they can lose their bonding character at certain atoms. This is how melting
and Tg transitions have been presented in the Lindemann [37] and Kanno�s [38] theories.
The theory just presented thus fits well into the general lines of melting theory of
Lindemann, (where the vibration amplitudes of nucleuses takes about 25% of radiuses of
electrons shells [39]), or [38], (where the amplitudes for Tg transition are smaller than at
Tm, by factor of about 0.80). Looking back into Table 1, we can state, that at Boyle tem-
perature the bonding electrons are �panted out� to the level, that they completely loose
their cohesive interaction ability and system behaves as ideal gas. The ability to cover all
transitions within one conceptual theory seems to be the major contribution of the theory
presented.

* * *
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